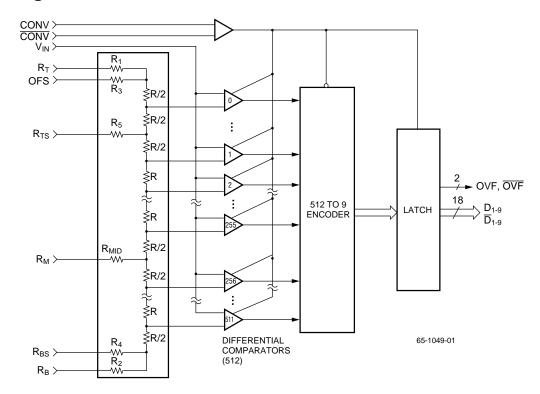
TDC1049

High-Speed A/D Converter 9-Bit, 30 Msps

Features

- 30 Msps conversion rate, 15 MHz analog bandwidth
- 9-Bit resolution and linearity
- · Sample-and-hold circuit not required
- Differential phase 0.5 degrees
- Differential gain 1.0%
- · Overflow flag
- Single -5.2V power supply
- Differential ECL outputs
- Available in a 64-pin DIP, 68-contact LCC and 68-pin ceramic pin grid array

Applications


- · Video data conversion
- · Radar data conversion
- · High-speed data acquisition

Description

The TDC1049 is a flash (full-parallel) analog-to-digital converter capable of converting analog signals with full-power frequency components up to 15 MHz into 9-bit words at rates up to 30 Msps (Megasamples Per Second). A sample-and-hold circuit is not required. All digital inputs and outputs are differential ECL.

The TDC1049 consists of 512 latching comparators, encoding logic and an output register. A differential convert signal controls the conversion operation. The outputs can be connected to give either true or inverted binary or offset two's complement formats.

Block Diagram

Functional Description

General Information

The TDC1049 has three functional sections: a comparator array, encoding logic and output register. The comparator array compares the input signal with 512 reference voltages to produce an N-of-512 code or "thermometer" code. The comparators referenced to voltages less than the input signal will be on and those referenced to voltages greater than the input signal will be off. The encoding logic converts the N-of-512 code into 9-bit binary data. The output register holds the output between updates.

Power

For optimum performance, separate analog and digital power, VEEA and VEED should be supplied to the TDC1049. Separate analog and digital power supplies or a common supply with separate analog and digital paths and highfrequency decoupling can be used. The return path for the current drawn from VEEA and VEED is AGND and DGND, respectively. The returns AGND and DGND should also be kept separate and connected together at the power supply terminals. It is recommended that provisions be made on the printed circuit board for shorting jumpers between analog and digital ground as close to the A/D converter as possible. The installation of the jumpers depends upon the printed circuit board layout and overall system performance once the system is in operation. The voltage difference between VEEA and VEED must be less than +0.1V. The same voltage difference limit applies to the difference between AGND and DGND. All power and ground inputs to the converter must be connected.

Reference

The TDC1049 converts analog signals in the range VRB < VIN < VRT into digital form. VRB (the voltage applied to RB) at the bottom of the reference resistor chain, and VRT (the voltage applied to RT) at the top of the reference resistor chain, should both be between +0.1V and -2.1V. Within that range, VRT must be more positive than VRB. The linearity specification is based upon a 2.0V difference between VRT and VRB. The nominal voltages are VRT = 0.0V and VRB = -20V. To avoid damage to the converter, the voltage across VRT and VRB must not exceed 2.2V. A decoupling capacitor is recommended between RB and AGND. Noise introduced at this point, as well as the other reference inputs (RT, RTS, RM, RBS, OFS), may result in encoding errors.

A midpoint tap, RM, allows the converter to be adjusted for optimum integral linearity. It can also be used to achieve a nonlinear transfer function, but adjustment of RM is not required to meet 9-bit linearity. If this node is driven by external circuitry, it should be driven from a low-impedance source; if not used, it must be left open.

Parasitic resistances, R1 and R2, introduce offset errors at the top and bottom of the reference resistor chain. Sense points, RTS, RBS and OFS, may be used to reduce the effect of these offset errors. Overflow Sense (OFS) may be used to reduce the effect of the offset at the overflow (most positive) comparator whenever the Overflow (OVF, OVF) flags are used. Sense points are not required for 9-bit linearity and, if not used, they must be left open.

Convert

The TDC1049 requires a differential ECL clock (CONV and $\overline{\text{CONV}}$) signal. The conversion occurs (the comparators are latched) within tSTO (Sampling Time Offset) of the rising edge of CONV. The 512 to 9 encoding is performed on the falling edge of the CONV signal. The coded result is transferred to the output register on the next rising edge of CONV. Data for sample N is available at the output tD (Output Delay Time) after the rising edge of sample N+1.

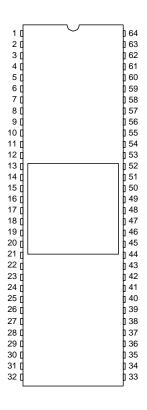
Analog Input

The TDC1049 uses latching comparators which are connected to the analog inputs $V_{\rm IN}$. For optimal performance, the source impedance of the driver amplifier should be less than 25Ω . The input signal will not damage the TDC1049 if it remains within the range of $V_{\rm EEA}$ to +0.5V. If the input signal is between the $V_{\rm RT}$ and $V_{\rm RB}$, the output will be a binary number between 0 and 511 inclusive. All five analog inputs must be connected.

Outputs

The outputs of the TDC1049 are differential ECL. The recommended pull-down resistance is 500Ω to -2V, or a $220/330\Omega$ termination between DGND and VEED. The OVF signal indicates that the analog input has exceeded the threshold of the most positive comparator. Data is held valid at the output register for at least tHO (Output Hold Time) after the rising edge of CONV. New data becomes valid tD after the rising edge of CONV.

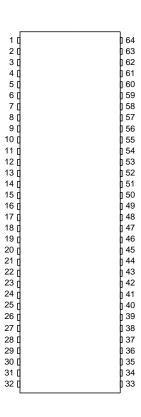
No Connects


There are several pins labeled NC (No Connect). These pins are not connected internally and may be either left open or connected to analog ground to aid heat transfer from the package and to reduce electrical noise.

Pin Assignments

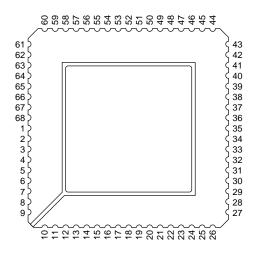
64 Lead Sidebrazed Ceramic DIP

Pin	Name	Pin	Name	Pin	Name	Pin	Name
1	D ₈	17	V _{EEA}	33	D ₂	49	V _{IN}
2	D ₇	18	NC	34	\overline{D}_1 (MSB)	50	V _{IN}
3	\overline{D}_7	19	V _{EEA}	35	D ₁ (MSB)	51	A _{GND}
4	D ₆	20	NC	36	OVF	52	A _{GND}
5	\overline{D}_6	21	NC	37	OVF	53	VIN
6	D ₅	22	V _{EED}	38	D _{GND}	54	NC
7	\overline{D}_{5}	23	NC	39	D _{GND}	55	R _T
8	A _{GND}	24	NC	40	R _{BS}	56	OFS
9	NC	25	A _{GND}	41	R _B	57	R _{TS}
10	NC	26	NC	42	NC	58	D _{GND}
11	V _{EED}	27	NC	43	V _{IN}	59	CONV
12	NC	28	\overline{D}_4	44	NC	60	CONV
13	NC	29	D ₄	45	A _{GND}	61	D _{GND}
14	V _{EEA}	30	\overline{D}_3	46	A _{GND}	62	D ₉ (LSB)
15	NC	31	D ₃	47	V _{IN}	63	D ₉ (LSB)
16	NC	32	\overline{D}_2	48	R _M	64	\overline{D}_8


65-1049-02

64 Lead Bottombraze Ceramic DIP

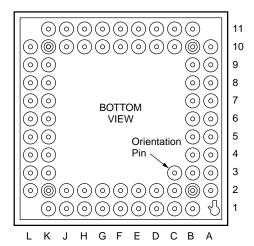
Pin	Name	Pin	Name	Pin	Name	Pin	Name
1	\overline{D}_8	17	R _M	33	\overline{D}_2	49	NC
2	D ₉ (LSB)	18	V _{IN}	34	D ₃	50	NC
3	D ₉ (LSB)	19	A _{GND}	35	\overline{D}_3	51	V _{EEA}
4	D _{GND}	20	A _{GND}	36	D ₄	52	NC
5	CONV	21	NC	37	\overline{D}_4	53	NC
6	CONV	22	V _{IN}	38	NC	54	V _{EED}
7	D _{GND}	23	NC	39	NC	55	NC
8	R _{TS}	24	R _B	40	A _{GND}	56	NC
9	OFS	25	R _{BS}	41	NC	57	A _{GND}
10	R _T	26	D _{GND}	42	NC	58	D ₅
11	NC	27	D _{GND}	43	V _{EED}	59	\overline{D}_5
12	V _{IN}	28	OVF	44	NC	60	D ₆
13	A _{GND}	29	OVF	45	NC	61	\overline{D}_6
14	A _{GND}	30	D ₁ (MSB)	46	V _{EEA}	62	D ₇
15	V _{IN}	31	\overline{D}_1 (MSB)	47	NC	63	\overline{D}_7
16	V _{IN}	32	D ₂	48	V _{EEA}	64	D ₈


65-1049-03

Pin Assignments (continued)

68 Lead LCC

Pin	Name	Pin	Name	Pin	Name	Pin	Name
1	D ₈	18	V _{EEA}	35	\overline{D}_2	52	R _M
2	\overline{D}_7	19	NC	36	D ₂	53	V _{IN}
3	D ₇	20	V _{EEA}	37	\overline{D}_1 (MSB)	54	V _{IN}
4	\overline{D}_{6}	21	V _{EEA}	38	D ₁ (MSB)	55	A _{GND}
5	D ₆	22	V _{EED}	39	OVF	56	NC
6	\overline{D}_{5}	23	NC	40	OVF	57	A _{GND}
7	D ₅	24	NC	41	D _{GND}	58	V _{IN}
8	NC	25	NC	42	NC	59	R _T
9	A _{GND}	26	NC	43	R _{BS}	60	NC
10	NC	27	AGND	44	R _B	61	OFS
11	NC	28	NC	45	NC	62	R _{TS}
12	NC	29	NC	46	V _{IN}	63	CONV
13	V _{EED}	30	NC	47	NC	64	CONV
14	V _{EEA}	31	\overline{D}_4	48	A _{GND}	65	D _{GND}
15	NC	32	D ₄	49	AGND	66	D ₉ (LSB)
16	V _{EEA}	33	\overline{D}_3	50	V _{IN}	67	D ₉ (LSB)
17	NC	34	D ₃	51	NC	68	\overline{D}_{8}



65-1049-04

68 Lead Ceramic Pin Grid Array

Pin	Name	Pin	Name	Pin	Name	Pin	Name
A2	NC	В9	V _{EEA}	F10	D ₈	K4	A _{GND}
A3	V _{EED}	B10	NC	F11	\overline{D}_7	K5	V _{IN}
A4	NC	B11	A _{GND}	G1	\overline{D}_1 (MSB)	K6	V _{IN}
A5	NC	C1	NC	G2	D ₁ (MSB)	K7	NC
A6	NC	C2	NC	G10	D ₉ (LSB)	K8	A _{GND}
A7	NC	C10	D ₅	G11	\overline{D}_8	K9	V _{IN}
A8	NC	C11	NC	H1	OVF	K10	R _{TS}
A9	NC	D1	D ₄	H2	OVF	K11	CONV
A10	V _{EED}	D2	\overline{D}_4	H10	D _{GND}	L2	NC
B1	NC	D10	D ₆	H11	D ₉ (LSB)	L3	NC
B2	A _{GND}	D11	\overline{D}_5	J1	NC	L4	A _{GND}
В3	V _{EEA}	E1	D ₃	J2	D _{GND}	L5	R _M
B4	NC	E2	\overline{D}_3	J10	CONV	L6	NC
B5	V _{EEA}	E10	D ₇	J11	D _{GND}	L7	V _{IN}
B6	V _{EEA}	E11	\overline{D}_{6}	K1	R _{BS}	L8	A _{GND}
B7	V _{EEA}	F1	D ₂	K2	R _B	L9	R _T
B8	NC	F2	\overline{D}_2	К3	V _{IN}	L10	OFS

65-1049-05

Pin Definitions

		Pin Nun	nber			
Pin Name	Bottom- brazed DIP	Sidebrazed DIP	LCC	PGA	Value	Pin Function Description
VEEA	46, 48, 51	14,17,19	14, 16, 18, 20, 21	B9, B7, B6, B5	-5.2V	Analog Supply Voltage
VEED	43, 54	11, 22	13, 22	A3, A10	-5.2V	Digital Supply Voltage
DGND	4, 7, 26, 27	38, 39, 58, 61	41, 65	J2, J11, H10	0.0V	Digital Ground
AGND	13, 14, 19, 20, 40, 57	8, 25, 45, 46, 51, 52	9, 27, 48, 49, 55, 57	B2, K4, L4, K8, L8,	0.0V	Analog Ground
RT	10	55	59	L9	0.0V	Reterence Resistor, Top
RTS	8	57	62	K10	0.0V	Reference Resistor, Top Sense
RB	24	41	44	K2	-2.0V	Reference Resistor, Bottom
R _B S	25	40	43	K1	-2 0V	Reference Resistor, Bottom Sense
RM	17	48	52	L5	-1.0V	Reference Resistor, Midpoint
OFS	9	56	61	L10	0.0V	Overflow Sense
CONV	5	60	64	J10	ECL	Convert
CONV	6	59	63	K11	ECL	Convert, Complement
VIN	12, 15, 16, 18, 22	43, 47, 49, 50, 53	46, 50, 53, 54, 58	K3, K5, K6, L7, K9	0V to -2V	Analog Signal Input
D ₁ MSB	30	35	38	G1	ECL	Most Significant Bit
D ₂ –D ₈	32, 34, 36, 58, 60, 62, 64	33, 31, 29, 7, 5, 3, 1	36, 34, 7, 5, 3, 1	F1, E1, D1, C10, D10, E10, F10	ECL	
D ₉ LSB	2	63	67	G10	ECL	Least Significant Bit
Ū₁ MSB	31	34	37	G2	ECL	Most Significant Bit Complement
D ₂ –D ₈	33, 35, 37, 59, 61, 63, 1	32, 30, 28, 6, 4, 2, 64	35, 33, 31, 6, 4, 2, 68	F2, E2, D2, D11, E11, F11, G11	ECL	
D ₉ LSB	3	62	66	H11	ECL	Least Significant Bit Complement
OVF	28	37	40	H2	ECL	Ovedlow Output
OVF	29	36	39	H1	ECL	Overflow Output Complement
NC	11, 21, 23, 38, 39, 41, 42, 44, 45, 47, 49, 50, 52, 53, 55, 56	9, 10, 12, 13, 15,16, 18, 20, 21, 23, 24, 26, 27, 42, 44, 54	8, 10, 11, 12, 15, 17, 19, 23, 24, 25, 26, 28, 29, 30, 42, 45, 47, 51, 56, 60	L3, L6, K7,	Open	No Connect

Absolute Maximum Ratings (beyond which the device may be damaged)¹

Parameter	Min.	Max.	Unit					
Supply Voltages	•	•	•					
VEED (measured to DGND)	-7.0	+0.5	V					
VEEA (measured to AGND)	7.0	+0.5	V					
AGND (measured to DGND)	-1.0	+1.0	V					
VEEA (measured to VEED)	-0.5	+0.5	V					
Input Voltages ²								
CONV, CONV (measured to DGND)	+0.5	VEE	V					
VIN, VRT, VRB (measured to AGND)	+0.5	VEE	V					
V _{RT} (measured to V _{RB})	-2.5	+2.5	V					
Output	•							
Short-circuit duration (single output in HIGH state to ground)		Infinite						
Temperature								
Operating, case	-60	+140	°C					
junction		+175	°C					
Lead, soldering (10 seconds)		300	°C					
Storage	- 65	+150	°C					

Notes:

- 1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
- 2. Applied voltage must be current limited to specified range.

Operating Conditions

				Temperature Range				
		S	Standar	ď	E	xtende	d	
Parameter		Min.	Nom.	Max.	Min.	Nom.	Max.	Units
VEED	Digital Supply Voltage (measured to DGND)	-4.9	-5.2	-5.5	-4.9	-5.2	-5.5	V
VEEA	Analog Supply Voltage (measured to AGND)	-4.9	-5.2	-5.5	-4.9	-5.2	-5.5	V
VAGND	Analog Ground Voltage (measured to DGND)	-0.1	0.0	+0.1	-0.1	0.0	+0.1	V
VEEA-VEED	Supply Voltage Differential	-0.1	0.0	+0.1	-0.1	0.0	+0.1	V
tpWL	CONV Pulse Width, LDW	12			12			ns
tpwH	CONV Pulse Width, HIGH	15			15			ns
VICM	Input Voltage, Common Mode	-0.5		-2.5	-0.5		-2.5	V
VIDF	Input Voltage, Differential	0.3		1.2	0.3		1.2	V
VIN	Input Voltage Range	VRB		VRT	VRB		VRT	V
VRT	Most Positive Reference Inputs ¹	-0.1	0.0	0.1	-0.1	0.0	+0.1	V
VRB	Most Negative Reference Input ¹	-1.9	-2.0	-2.1	-1.9	-2.0	-2.1	V
VRT-VRB	Voltage Reference Differential	1.8	2.0	2.2	1.8	2.0	2.2	V
TA	Ambient Temperature, Still Air	0		70				°C
TC	Case Temperature				-55		125	°C

Note:

1. VRT must be more postive than VRB, and the voltage reference differential must be within the specified range.

DC Electrical Characteristics

			Temperature Range				
			Stan	dard	Exte	nded	
Parame	eter	Test Conditions	Min. Max.		Min.	Max.	Units
IEE	Supply Current	VEED, VEEA = Max	•	•	•	•	
		TA = 0°C to 70°C		-950			mA
		T _A = 70°C		-750			mA
		IC = - 55°C to 125° C				-1090	mA
		T _C = 125°C				-750	mA
IREF	Reference Current	VRT, VRB = Nom	10	36	10	36	mA
RREF	Total Reference Resistance		56	200	56	200	Ω
RIN	Input Equivalent Resistance	VRT, VRB = Nom, VIN = VRB	16		16		ΚΩ
CIN	Analog Input Capacitance	V _{RT} , V _{RB} = Nom, V _{IN} = V _{RB}		160		160	pF
ICB	Inpul Constant Bias Current	VEEA = Max, VIN = 0V		500		750	μΑ
l _l	Input Current, CONV, CONV	VEED = Max, V _I = -0.7V		150		180	μΑ
VoL	Output Voltage, Logic LOW1	VEED = Nom		-1.6		-1.5	V
Voн	Output Voltage, Logic HIGH ¹	VEED = Nom	-0.95		-1.1		V
Cı	Digital Input Capacitance	T _A = 25°C, f = 1MHz		20		20	pF

Note

AC Electrical Characteristics

			Temperature Range			je	
			Standard Extended		nded		
Para	meter	Test Conditions	Min.	Max.	Min.	Max.	Units
Fs	Maximum Conversion Rate	VEED, VEEA = Min	30		30		Msps
tsto	Sampling Time Offset	VEED, VEEA = Min	-2	6	-2	6	ns
tD	Output Delay ¹	VEED, VEEA = Min		27		27	ns
tHO	Output Hold Time ¹	VEED, VEEA = Min	3		3		ns

Note:

Timing Diagrams

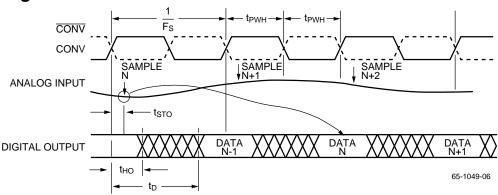


Figure 1. Timing Diagram

^{1.} Test Load = 500Ω to -2v on each output.

^{1.} Test Load = 500Ω to -2V on each output, C_{LOAD} = 20pF.

Timing Diagrams (continued)

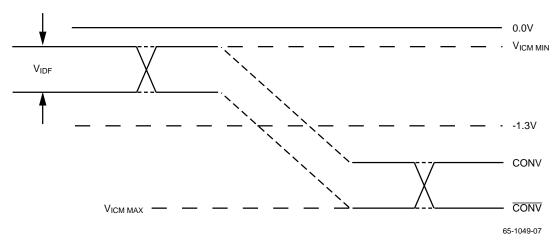


Figure 2. CONVert, CONVert Switching Levels

System Performance Characteristics

			Tei	nperat	ure Ra	nge	
			Star	dard	Exte	nded	
Param	eter	Test Conditions	Min.	Max.	Min.	Max.	Units
ELI	Linearity Error Integral,	VRT, VRB = Nom		0.15		0.20	%
	Independent	V _{RT} , V _{RB} = Nom, V _{RM} Adjusted		0.10		0.10	%
ELD	Linearity Error Differential	VRT, VRB = Nom		0.1		0.1	%
Q	Code Size	V _{RT} , V _{RB} = Nom	15	185	15	185	% Nominal
Eots	Offset Error, Top	VIN = VRT, RTS Connected		±4		±4	mV
Еот	Offset Error, Top	VIN = VRT		30		30	mV
Eobs	Offset Error, Bottom	VIN = VRB, RBS Connected		±4		±4	mV
Еов	Offset Error, Bottom	VIN = VRB		-30		-30	mV
Tco	Offset Error, Temperature Coefficient			20		20	μV/°C
tTR	Transient Response, Full-Scale			20		20	ns
BW	Bandwidth, Full Power Input	±0.9dB Frequency Response	15		15		MHz
SNR	Signal-to-Noise Ratio	30Msps Conversion Rate, 10MHz	Bandwi	dth		•	•
	Peak Signal/RMS Noise	1.25MHz Input	57		57		dB
		5.0MHz Input	53		53		dB
	RMS Signal/RMS Noise	1.25MHz Input	48		48		dB
		5.0MHz Input	44		44		dB
EAP	Aperture Error			50		50	ps
DP	Differential Phase Error	F _S = 4 x NTSC		0.5		0.5	Degree
DG	Differential Gain Error	Fs = 4 x NTSC		1.5		1.5	%

Typical Performance Curves

Power Supply Current vs. Temperature POWER SUPPLY CURRENT (mA) -450 -500 -550 -600 -650 -700 -750 -800 -850 -55° -25° 0° 25° 50° 75° 100° 125° CASE TEMPERATURE (°C)

Figure 3. Power Supply Current vs. Temperature

SNR vs. Analog Input Frequency 60 (8p) 50 30 10 1.248 2.438 3.58 5 6 7 8 9 10 11 12 13 14 15 ANALOG INPUT FREQUENCY (MHz)

Figure 4. SNR vs. Analog Input Frequency

Equivalent Circuits

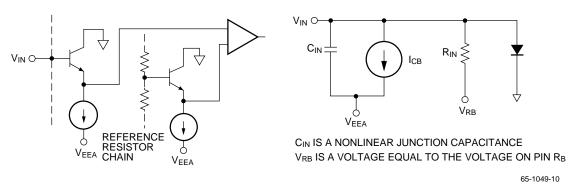


Figure 5. Simplified Analog Input Equivalent Circuits

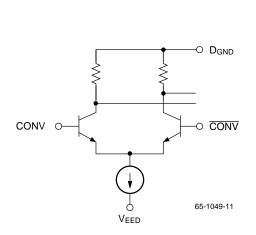


Figure 6. Digital Input Equivalent Circuit

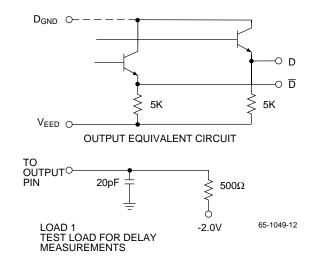


Figure 7. Output Circuits

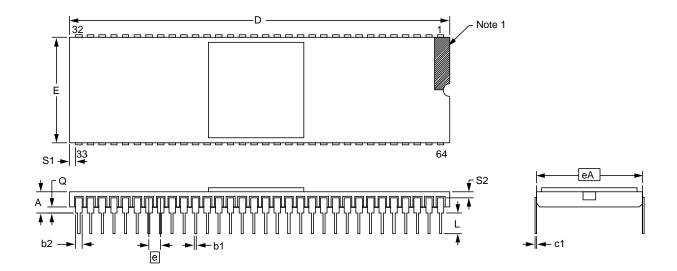
Output Coding Table¹

		D ₁	D9	
VIN	OVF	MSB	LSB	
+0.0039V	1	000000000		
0.0000V	0	00000	00000	
-0.0039V	0	00000	00001	
•	•	•		
•	•	:		
•				
-0.9980V	0	01111	1111	
-1.0020V	0	10000	0000	
-1.0059V	0	10000	00001	
•	•	•		
•	•			
•				
-1.9961V	0	111111110		
-2.0000V	0	11111	1111	

Note:

1. Voltages are code midpoints.

Standard Military Drawing

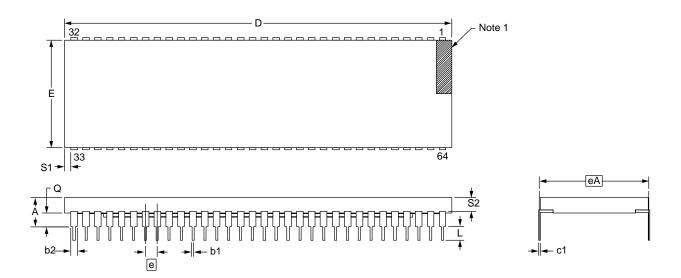

These devices are also available as products manufactured, tested, and screened in compliance with Standard Military Drawings (SMDs). The nearest vendor equivalent product is shown on the back page of this document; however, the applicable SMD is the sole controlling document defining the SMD product.

Mechanical Dimensions

64 Lead Sidebrazed Ceramic DIP

Comple al	Inches		Millim	neters	Notes	
Symbol	Min.	Max.	Min.	Max.	Notes	
Α	.120	.175	3.05	4.44		
B1	.015	.023	.38	.58	7	
B2	.040	.065	1.02	1.65	2	
C1	.008	.015	.20	.38	7	
D	3.170	3.240	80.52	82.30		
Е	.880	.910	14.60	15.48		
е	.100	BSC	2.54	BSC	4, 8	
eA	.900	BSC	22.86	BSC	6	
L	.125	.175	3.18	4.45		
Q	.025	.065	.63	1.65	3	
S1	.005	_	.13	_	5	
S2	.005	_	.13	_		

- Index area: a notch or a pin one identification mark shall be located adjacent to pin one. The manufacturer's identification shall not be used as pin one identification mark.
- 2. The minimum limit for dimension "b2" may be .023(.58mm) for leads number 1, 32, 33, and 64 only.
- 3. Dimension "Q" shall be measured from the seating plane to the base plane.
- The basic pin spacing is .100 (2.54mm) between centerlines. Each pin centerline shall be located within ±.010 (.25mm) of its exact longitudinal position relative to pins 1 and 64.
- 5. Applies to all four corners (leads number 1, 32, 33, and 64).
- 6. "eA" shall be measured at the centerline of the leads.
- 7. All leads Increase maximum limit by .003(.08mm) measured at the center of the flat when lead finish is applied.
- 8. Sixty-two spaces.

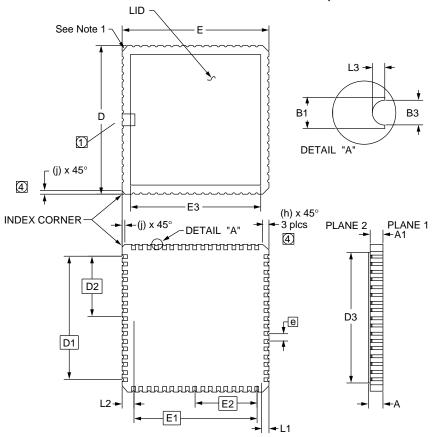


Mechanical Dimensions (continued)

64 Lead Bottombrazed Ceramic DIP

Symbol	Inches		Millimeters		Notes
	Min.	Max.	Min.	Max.	Notes
Α	.125	.200	3.18	5.08	
B1	.015	.023	.38	.58	7
B2	.040	.065	1.02	1.65	2
C1	.008	.015	.20	.38	7
D	3.110	3.240	80.00	82.30	
E	.790	.810	20.07	20.57	
е	.100 BSC		2.54 BSC		4, 8
eA	.900 BSC		22.86 BSC		6
L	.125	.175	3.18	4.45	
Q	.050	.100	1.27	2.54	3
S1	.005	_	.13	_	5
S2	.005	_	.13	_	

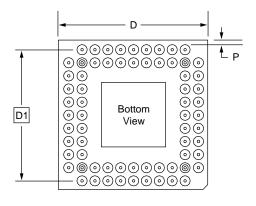
- Index area: a notch or a pin one identification mark shall be located adjacent to pin one. The manufacturer's identification shall not be used as pin one identification mark.
- 2. The minimum limit for dimension "b2" may be .023(.58mm) for leads number 1, 32, 33, and 64 only.
- 3. Dimension "Q" shall be measured from the seating plane to the base plane.
- 4. The basic pin spacing is .100 (2.54mm) between centerlines. Each pin centerline shall be located within \pm .010 (.25mm) of its exact longitudinal position relative to pins 1 and 64.
- 5. Applies to all four corners (leads number 1, 32, 33, and 64).
- 6. "eA" shall be measured at the centerline of the leads.
- 7. All leads Increase maximum limit by .003(.08mm) measured at the center of the flat when lead finish is applied.
- 8. Sixty-two spaces.



Mechanical Dimensions (continued)

68 Lead LCC

	Inches		Millimeters		
Symbol	Min.	Max.	Min.	Max.	Notes
Α	.082	.110	2.08	2.79	3, 6
A1	.071	.093	1.83	2.39	3, 6
B1	.022	.028	.560	.710	2
B3	.006	.022	.150	.560	2,5
D/E	.938	.962	23.82	24.43	
D1/E1	.800 BSC		20.32 BSC		
D2/E2	.400 BSC		10.16 BSC		
е	.050 BSC		1.27 BSC		
h	.040 BSC		1.02 BSC		4
j	.020 BSC		.510 BSC		4
L1	.045	.055	1.14	1.40	
L2	.075	.095	1.91	2.41	
L3	.003	.015	.080	.380	5
ND/NE	17		17		
N	68		68		


- The index feature for terminal 1 identification, optical orientation or handling purposes, shall be within the shaded index areas shown on planes 1 and 2. Plane 1 terminal 1 identification may be an extension of the length of the metallized terminal which shall not be wider than the B1 dimension.
- Unless otherwise specified, a minimum clearance of .015 inch (0.38mm) shall be maintained between all metallized features (e.g., lid, castellations, terminals, thermal pads, etc.).
- 3. Dimension "A" controls the overall package thickness. The maximum "A" dimension is the package height before being solder dipped.
- The corner shape (square, notch, radius, etc.) may vary at the manufacturer's option, from that shown on the drawing. The index corner shall be clearly unique.
- 5. Dimension "B3" minimum and "L3" minimum and the appropriately derived castellation length define an unobstructed three dimensional space traversing all of the ceramic layers in which a castellation was designed. Dimension "B3" maximum and "L3" maximum define the maximum width and depth of the castellation at any point on its surface. Measurement of these dimensions may be made prior to solder dripping.
- 6. Chip carriers shall be constructed of a minimum of two ceramic layers.

Mechanical Dimensions (continued)

68 Lead Plastic Grid Array

	Inches		Millimeters		
Symbol	Min.	Max.	Min.	Max.	Notes
А	.080	.125	2.03	3.18	
A1	.025	.060	0.64	1.52	
A2	.105	.180	2.67	4.57	
øΒ	.017	.020	0.43	0.51	
øB2	.050 NOM.		1.27 NOM.		
D	1.140	1.180	28.96	29.97	
D1	1.000 BSC		25.40 BSC		
е	.100 BSC		2.54 BSC		
L	.120	.140	3.05	3.56	
М	11		11		2
N	68		68		3
Р	.003	_	.076	_	

Pin 1 Identifier Beveled Corner Vendor Option

- 1. Pin #1 identifier shall be within shaded area shown.
- 2. Dimension "M" defines matrix size.
- 3. Dimension "N" defines the maximum possible number of pins.
- 4. Controlling dimension: inch.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1049J0C	STD - T _A = 0°C to 70°C	Commercial	64 Lead Sidebrazed Ceramic DIP	1049J0C
TDC1049J0V	EXT - T_C = -55°C to 125°C	MIL-STD-883	64 Lead Sidebrazed Ceramic DIP	1049J0V
5962-8853201XA	EXT - T _C = -55°C to 125°C	Per Standard Mil Drawing	64 Lead Sidebrazed Ceramic DIP	5962-8853201XA
TDC1049C1C	STD - TA = 0°C to 70°C	Commercial	68-Lead LCC	1049C1C
TDC1049C1V	EXT - T_C = -55°C to 125°C	MIL-STD-883	68-Lead LCC	1049C1V
5962-8853201ZA	EXT - T_C = -55°C to 125°C	Per Standard Mil Drawing	68-Lead LCC	5962-8853201ZA
TDC1049G8C	STD - T _A = 0°C to 70°C	Commercial	68 Lead Ceramic PGA	1049G8C
TDC1049G8V	EXT - T _C = -55°C to 125°C	MIL-STD-B83	68 Lead Ceramic PGA	1049G8V

Standard Military Drawing	Nearest Equivalent Raytheon Product No.	Package
5962-8853201XA	TDC1049J0V	64 Lead Sidebrazed Ceramic DIP
5962-8853201YA	TDC1049J3V	64 Lead Bottombrazed Ceramic DIP
5962-8853201ZA	TDC1049C1V	68-Lead LCC
5962-8853201UA	TDC1049L1V	68-Lead LCC

The information contained in this data sheet has been carefully compiled; however, it shall not by implication or otherwise become part of the terms and conditions of any subsequent sale. Raytheon's liability shall be determined solely by its standard terms and conditions of sale. No representation as to application or use or that the circuits are either licensed or free from patent infringement is intended or implied. Raytheon reserves the right to change the circuitry and any other data at any time without notice and assumes no liability for errors.

LIFE SUPPORT POLICY:

Raytheon's products are not designed for use in life support applications, wherein a failure or malfunction of the component can reasonably be expected to result in personal injury. The user of Raytheon components in life support applications assumes all risk of such use and indemnifies Raytheon Company against all damages.

Raytheon Electronics Semiconductor Division 5580 Morehouse Drive San Diego, CA 92121 619 457 1000 800 722 7074 Fax 619 455 6314 applications@lj.sd.ray.com